Tripeptide-29 acts as a building block of larger collagen molecules. In so doing, it can change, by virtue of its amino acid sequence and relative frequency with the collagen superstructure, the tertiary and quaternary properties of a collagen molecule. It is important to remember that collagen is not just a structural protein, but also plays roles in cell adhesion, tissue regulation, and healing.
Tripeptide-29 is a synthetic mimic of one of the basic building blocks of collagen. Collagen is a long-chain polymer made of short monomeric repeats that are generally made up of three amino acids in sequence. These repeats bond together to create secondary structures, which then combine to form tertiary and even quaternary structures. These complex structures have many emergent properties that the peptide subunits don’t possess. However, changing the nature of the peptide subunits can change the ultimate properties of a quaternary collage compound. Collagen subunits almost always follow the pattern of Gly-Pro-X or Gly-X-Hyp. Tripeptide-29 is a Gly-Pro-Hyp peptide, making it a perfect synthetic analogue of common collage building blocks.
Fundamentally, tripeptide-29 acts as a building block of larger collagen molecules. In so doing, it can change, by virtue of its amino acid sequence and relative frequency with the collagen superstructure, the tertiary and quaternary properties of a collagen molecule. It is important to remember that collagen is not just a structural protein, but also plays roles in cell adhesion, tissue regulation, and healing. Thus, tripeptide-29 has the potential to impact a multitude of physiologic features.
In vitro research into tripeptide-29 has revealed that the peptide, in its non-polymerized form, is a partial agonists of the collagen receptor GPVI[1]. GPVI is expressed on the surface of platelets, the cell-like structures responsible for the early formation of blood clots. The GPVI receptor plays a crucial role in the collagen-induced activation of platelet aggregation in vascular tissue, a first step to clot formation and tissue repair. Thus, collagen fibers are generally considered thrombogenic.
When dysregulated, collagen thrombogenesis may lead to the development of blood clots. Interestingly, crosslinking of tripeptide-29 appears to boost GPVI activation, suggesting that the peptide could be useful in understanding how to create a “just-right” clotting environment in the setting of various bleeding/clotting disorders.
Benchtop research into the role of short peptides like tripeptide-29 has revealed that they can be used to modulate the stability of collagen. Tripeptide-29, in particular, has helped scientists to understand that the ultimate structure of collagen is influenced most by the last peptide in a tripeptide monomer. In a monomer of A-B-C, it is the peptide in the C position that has most influence on final collagen stability[2]. This finding could help scientists to one day create synthetic implants for cartilage, bone, teeth, and more.
Free radical damage is the primary cause of cellular and tissue aging. The body has a number of defenses against free radical damage, but they all become less effective over time. Research in sea cucumber has revealed that collagen hydrolysates constructed from monomers like tripeptide-29 are effective radical scavengers, and that the structure of the tripeptide monomer can affect scavenger activity. No research has been carried out on Tripeptide 29, yet, but there is interest in determining how such peptides could be used in foods and nutraceutical products[3].
In vitro studies of pig skin, cattle skin, fish scales, and chick feet have revealed that tripeptide-29 is an inhibitor of dipeptidylpeptidase-IV activity[4], [5]. Dipeptidylpeptidase-IV (DPP4) is an enzyme found mostly in cells associated with immune signaling and cell apoptosis. It is an intrinsic part of the cell membrane and indiscriminately destroys growth factors, chemokines, neuropeptides, and vasoactive peptides. It also plays a large role in glucose metabolism by breaking down incretins, hormones that stimulate a decrease in blood glucose levels.
Animal studies have revealed that DPP4 plays a role in the development of fibrosis in organs that include the kidney and liver[5]. Inhibiting the enzyme thus prevents scarring in disease processes that affect these organs. Tripeptide-29 maybe doubly beneficial in this setting, as diabetes is a prime cause of kidney fibrosis. The ability of Tripeptide-29 to stimulate glucose uptake and reduce fibrosis, both by inhibiting DPP4, opens a number of research avenues in the control of not just diabetes, but its pathologic sequelae as well.
There is recent interest in the role of tripeptide-29 and other tripeptides in protecting skin against the normal process of aging. Research in animals suggests that topical use of tripeptides can reduce the visible effects of skin aging by improving contour, reducing skin deformation, and boosting hydration. There is also evidence that tripeptides can smooth skin texture and reduce the appearance of brown and red spots. In fact, 90% of subjects in the study showed improved moisturization of the skin in addition to increased flexibility secondary to improve elasticity[6].
When combined with certain hexapeptides, topical tripeptide-29 can boost skin turnover and reduce fine lines, crow’s feet, under eye bags, and eye hollowing. In these animal studies, roughly 50% of subjects showed improved skin appearance with twice daily application of the peptide paste[7].
All of our products are manufactured using the Lyophilization (Freeze Drying) process, which ensures that our products remain 100% stable for shipping 3-4 months reconstituted (mixed with bacteriostatic water) to maintain stability. After reconstitution, the peptides will remain stable for up to 30 days.
Lyophilization is a unique dehydration process, also known as cryodesiccation, where the peptides are frozen and then subjected to low pressure. This causes the water in the peptide vial to sublimate directly from solid to gas, leaving behind a stable, crystalline white structure known as lyophilized peptide. The puffy white powder can be stored at room temperature until you're ready to reconstitute it with bacteriostatic water.
Once peptides have been received, it is imperative that they are kept cold and away from light. If the peptides will be used immediately, or in the next several days, weeks or months, short-term refrigeration under 4C (39F) is generally acceptable. Lyophilized peptides are usually stable at room temperatures for several weeks or more, so if they will be utilized within weeks or months such storage is typically adequate.
However, for longer term storage (several months to years) it is more preferable to store peptides in a freezer at -80C (-112F). When storing peptides for months or even years, freezing is optimal in order to preserve the peptide’s stability.
Read Reviews from our satisfied customers. Share your experience with Us by clicking the below button!
Biogen Peptides has been my go-to source for research-grade peptides. The quality and consistency are unmatched, and the customer service is always top-notch.
Excellent purity and fast shipping! Biogen Peptides is truly dedicated to supporting research professionals with top-quality products.
Biogen Peptides consistently delivers top-quality products. The purity of their peptides has enhanced the reliability of my research outcomes.